BME 171-02, Signals and Systems

Exam II: Solutions
 100 points total

0. (5 pts .) Fourier transform tables.
1. $(20 \mathrm{pts}$.$) Determine the Fourier transforms of the following signals:$
(a) $x(t)=\left(\cos (5 t)+e^{-2 t}\right) u(t)$

Solution:

$$
\begin{aligned}
\cos (5 t) u(t) & \leftrightarrow \frac{1}{2}\left[\pi \delta(\omega+5)+\frac{1}{j(\omega+5)}+\pi \delta(\omega-5)+\frac{1}{j(\omega-5)}\right] \\
e^{-2 t} u(t) & \leftrightarrow \frac{1}{j \omega+2} \\
X(\omega) & =\frac{1}{2}\left[\pi \delta(\omega+5)+\frac{1}{j(\omega+5)}+\pi \delta(\omega-5)+\frac{1}{j(\omega-5)}\right]+\frac{1}{j \omega+2}
\end{aligned}
$$

(b) $x(t)=(1-t) p_{2}(t)$

Solution:

$$
\begin{aligned}
p_{2}(t) & \leftrightarrow 2 \operatorname{sinc}\left(\frac{\omega}{\pi}\right) \\
t p_{2}(t) & \leftrightarrow 2 j \frac{d}{d \omega} \operatorname{sinc}\left(\frac{\omega}{\pi}\right) \\
X(\omega) & =2\left[\operatorname{sinc}\left(\frac{\omega}{\pi}\right)-j \frac{d}{d \omega} \operatorname{sinc}\left(\frac{\omega}{\pi}\right)\right]
\end{aligned}
$$

(c) $x(t)=\int_{0}^{t} e^{-3(t-\lambda)} p_{1}(\lambda-1 / 2) d \lambda$

Solution: let $x_{1}(t)=e^{-3 t} u(t)$ and $x_{2}(t)=p_{1}(t-1 / 2)$. Then $x(t)=x_{1}(t) \star x_{2}(t)$.

$$
\begin{aligned}
x_{1}(t) & \leftrightarrow \frac{1}{j \omega+3} \\
x_{2}(t) & \leftrightarrow \operatorname{sinc}\left(\frac{\omega}{2 \pi}\right) e^{-j \omega / 2} \\
X(\omega) & =X_{1}(\omega) X_{2}(\omega)=\frac{1}{j \omega+3} \operatorname{sinc}\left(\frac{\omega}{2 \pi}\right) e^{-j \omega / 2}
\end{aligned}
$$

(d) $x(t)= \begin{cases}0, & t<0 \\ t, & 0 \leq t \leq 2 \\ 2, & t>2\end{cases}$

Solution: let $x_{1}(t)=p_{2}(t-1)$ and note that $x(t)=\int_{0}^{t} x_{1}(\lambda) d \lambda$. Then

$$
\begin{aligned}
x_{1}(t) & \leftrightarrow 2 \operatorname{sinc}\left(\frac{\omega}{\pi}\right) e^{-j \omega} \\
X_{1}(0) & =2 \\
X(\omega) & =\frac{1}{j \omega} X_{1}(\omega)+\pi X_{1}(0) \delta(\omega)=\frac{2}{j \omega} \operatorname{sinc}\left(\frac{\omega}{\pi}\right) e^{-j \omega}+2 \pi \delta(\omega)
\end{aligned}
$$

2. (25 pts.) Write down the trigonometric Fourier series representation of the following signal:

Solution: we have $T=2 \pi, \omega_{0}=\frac{2 \pi}{T}=1$.

$$
\begin{aligned}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x(t) d t & =\frac{1}{2 \pi}\left(\int_{-\pi}^{0}(-t) d t+\int_{0}^{\pi} \pi d t\right)=\frac{1}{2 \pi}\left(\left[-\frac{t^{2}}{2}\right]_{-\pi}^{0}+\pi^{2}\right)=\frac{1}{2 \pi}\left(\frac{\pi^{2}}{2}+\pi^{2}\right)=\frac{3 \pi}{4} \\
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cos (k t) d t=\frac{1}{\pi}\left(-\int_{-\pi}^{0} t \cos (k t) d t+\pi \int_{0}^{\pi} \cos (k t) d t\right) \\
& =\frac{1}{\pi}\left(-\left[\frac{1}{k} t \sin (k t)\right]_{-\pi}^{0}+\frac{1}{k} \int_{-\pi}^{0} \sin (k t) d t+\pi\left[\frac{1}{k} \sin (k t)\right]_{0}^{\pi}\right) \\
& =\frac{1}{\pi}\left(0-\frac{1}{k}\left[\frac{1}{k} \cos (k t)\right]_{-\pi}^{0}+0\right)=\frac{\cos (\pi k)-1}{\pi k^{2}} \\
& =\left\{-\frac{2}{\pi k^{2}}, \text { if } k\right. \text { is odd } \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \sin (k t) d t=\frac{1}{\pi}\left(-\int_{-\pi}^{0} t \sin (k t) d t+\pi \int_{0}^{\pi} \sin (k t) d t\right) \\
& =\frac{1}{\pi}\left(\left[\frac{1}{k} t \cos (k t)\right]_{-\pi}^{0}-\frac{1}{k} \int_{-\pi}^{0} \cos (k t) d t-\pi\left[\frac{1}{k} \cos (k t)\right]_{0}^{\pi}\right) \\
& =\frac{1}{\pi}\left(\frac{1}{k} \pi \cos (\pi k)+0-\pi\left(\frac{1}{k} \cos (k \pi)-\frac{1}{k}\right)\right) \\
& =\frac{1}{k}
\end{aligned}
$$

Thus,

$$
x(t)=\frac{3 \pi}{4}-\sum_{\substack{k=0 \\ k \text { odd }}}^{\infty} \frac{2}{\pi k^{2}} \cos (k t)+\sum_{k=1}^{\infty} \frac{1}{k} \sin (k t)
$$

3. (20 pts.) An LTI system generates the output

$$
y(t)=\left(e^{-2 t}-e^{-3 t}\right) u(t)
$$

in response to the input $x(t)=e^{-2 t} u(t)$.
(a) Determine the unit impulse response $h(t)$ of the system.

Solution: since the system is LTI, $y(t)=x(t) \star h(t)$. In the frequency domain,

$$
\begin{aligned}
Y(\omega) & =X(\omega) H(\omega) ; \\
X(\omega) & =\frac{1}{j \omega+2} \\
Y(\omega) & =\frac{1}{j \omega+2}-\frac{1}{j \omega+3}=\frac{1}{(j \omega+2)(j \omega+3)} \\
H(\omega) & =\frac{Y(\omega)}{X(\omega)}=\frac{j \omega+2}{(j \omega+2)(j \omega+3)}=\frac{1}{j \omega+3} .
\end{aligned}
$$

Therefore,

$$
h(t)=e^{-3 t} u(t) .
$$

(b) Sketch the amplitude $|H(\omega)|$ and the phase $\angle H(\omega)$ in the sets of axes provided. Be sure to mark the axes properly.

$$
\begin{aligned}
H(\omega) & =\frac{1}{j \omega+3} \\
& =\frac{3}{j \omega+3}-j \frac{\omega}{\omega+3} \\
|H(\omega)| & =\frac{1}{\sqrt{\omega^{2}+9}} \\
\angle H(\omega) & =\tan ^{-1}\left(-\frac{\omega}{3}\right) \\
|H(0)| & =\frac{1}{3} \\
|H(\pm 3)| & =\frac{1}{\sqrt{2}}|H(0)|=\frac{1}{3 \sqrt{2}}
\end{aligned}
$$

4. (20 pts.) Consider the discrete-time signal

$$
x[n]=\cos (3 n) p[n],
$$

where $p[n]$ is the rectangular pulse

$$
p[n]= \begin{cases}1, & n=0,1, \ldots, 6 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Compute its discrete-time Fourier transform (DTFT) $X(\Omega)$.

Solution:

$$
\begin{aligned}
P(\Omega) & =\frac{\sin (7 \Omega / 2)}{\sin (\Omega / 2)} e^{-j 3 \Omega} \\
X(\Omega) & =\frac{1}{2}[P(\Omega+3)+P(\Omega-3)] \\
& =\frac{1}{2}\left[\frac{\sin (7(\Omega+3) / 2)}{\sin ((\Omega+3) / 2)} e^{-j 3(\Omega+3)}+\frac{\sin (7(\Omega-3) / 2)}{\sin ((\Omega-3) / 2)} e^{-j 3(\Omega-3)}\right]
\end{aligned}
$$

(b) Express the 7-point discrete Fourier transform (DFT) of $x[n]$ in terms of the DTFT $X(\Omega)$.

Solution: for $k=0,1, \ldots, 6$,

$$
\begin{aligned}
X_{k} & =X(2 \pi k / 7) \\
& =\frac{1}{2}\left[\frac{\sin (7(2 \pi k / 7+3) / 2)}{\sin ((2 \pi k / 7+3) / 2)} e^{-j 3(2 \pi k / 7+3)}+\frac{\sin (7(2 \pi k / 7-3) / 2)}{\sin ((2 \pi k / 7-3) / 2)} e^{-j 3(2 \pi k / 7-3)}\right]
\end{aligned}
$$

5. (10 pts.) You have two discrete-time signals, $x[n]$ and $\nu[n]$, where $x[n]=0$ for $n<0$ and $n \geq 1000$ and $\nu[n]=0$ for $n<0$ and $n \geq 1040$. Explain how you would use the FFT algorithm in order to efficiently compute the convolution $x[n] \star \nu[n]$ and estimate the number of (complex) multiplications you would need.
Solution: in general, the convolution of $x[n]$ and $\nu[n]$ will have $1000+1040=2040$ nonzero components. The smallest power of 2 that is larger than 2040 is $L=2048=2^{11}$. Let us pad $x[n]$ and $\nu[n]$ with zeros so that

$$
\begin{array}{ll}
x[n]=0, & n=1000,1001, \ldots, 2048 \\
\nu[n]=0, & n=1040,1041, \ldots, 2048
\end{array}
$$

Then to compute $x[n] \star \nu[n]$, we would first use the FFT algorithm to compute the L-point DFT's X_{k} and V_{k} of $x[n]$ and $\nu[n]$, and then use the FFT algorithm to compute the inverse L-point DFT of the product of X_{k} and V_{k}.
We will need:

- On the order of $(1 / 2) L \log _{2} L=(1 / 2) \cdot 2048 \cdot 11=11264$ multiplications to compute the L-point DFT of $x[n]$.
- On the order of $(1 / 2) L \log _{2} L=(1 / 2) \cdot 2048 \cdot 11=11264$ multiplications to compute the L-point DFT of $\nu[n]$.
- $L=2048$ multiplications to compute the product of X_{k} and V_{k}.
- On the order of $(1 / 2) L \log _{2} L=(1 / 2) \cdot 2048 \cdot 11=11264$ multiplications to compute the L-point inverse DFT of the product of X_{k} and V_{k}.

Thus, the total number of multiplications is on the order of

$$
11264+11264+2048+11264=35840
$$

