BME 171-02, Signals and Systems

Exam II: Solutions 100 points total

- 0. (5 pts.) Fourier transform tables.
- (20 pts.) Determine the Fourier transforms of the following signals:
 (a) x(t) = (cos(5t) + e^{-2t})u(t)

Solution:

$$\cos(5t)u(t) \quad \leftrightarrow \quad \frac{1}{2} \left[\pi\delta(\omega+5) + \frac{1}{j(\omega+5)} + \pi\delta(\omega-5) + \frac{1}{j(\omega-5)} \right]$$
$$e^{-2t}u(t) \quad \leftrightarrow \quad \frac{1}{j\omega+2}$$
$$X(\omega) \quad = \quad \frac{1}{2} \left[\pi\delta(\omega+5) + \frac{1}{j(\omega+5)} + \pi\delta(\omega-5) + \frac{1}{j(\omega-5)} \right] + \frac{1}{j\omega+2}$$

(b) $x(t) = (1 - t) p_2(t)$ Solution:

$$p_{2}(t) \quad \leftrightarrow \quad 2\operatorname{sinc}\left(\frac{\omega}{\pi}\right)$$

$$tp_{2}(t) \quad \leftrightarrow \quad 2j\frac{d}{d\omega}\operatorname{sinc}\left(\frac{\omega}{\pi}\right)$$

$$X(\omega) \quad = \quad 2\left[\operatorname{sinc}\left(\frac{\omega}{\pi}\right) - j\frac{d}{d\omega}\operatorname{sinc}\left(\frac{\omega}{\pi}\right)\right]$$

(c)
$$x(t) = \int_0^t e^{-3(t-\lambda)} p_1(\lambda - 1/2) d\lambda$$

Solution: let $x_1(t) = e^{-3t} u(t)$ and $x_2(t) = p_1(t-1/2)$. Then $x(t) = x_1(t) \star x_2(t)$

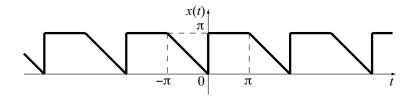
$$x_{1}(t) \leftrightarrow \frac{1}{j\omega+3}$$

$$x_{2}(t) \leftrightarrow \operatorname{sinc}\left(\frac{\omega}{2\pi}\right)e^{-j\omega/2}$$

$$X(\omega) = X_{1}(\omega)X_{2}(\omega) = \frac{1}{j\omega+3}\operatorname{sinc}\left(\frac{\omega}{2\pi}\right)e^{-j\omega/2}$$

(d)
$$x(t) = \begin{cases} 0, & t < 0 \\ t, & 0 \le t \le 2 \\ 2, & t > 2 \end{cases}$$

Solution: let $x_1(t) = p_2(t-1)$ and note that $x(t) = \int_0^t x_1(\lambda) d\lambda$. Then $x_1(t) \leftrightarrow 2 \operatorname{sinc}\left(\frac{\omega}{\pi}\right) e^{-j\omega}$ $X_1(0) = 2$ $X(\omega) = \frac{1}{j\omega} X_1(\omega) + \pi X_1(0)\delta(\omega) = \frac{2}{j\omega} \operatorname{sinc}\left(\frac{\omega}{\pi}\right) e^{-j\omega} + 2\pi\delta(\omega)$ 2. (25 pts.) Write down the trigonometric Fourier series representation of the following signal:



Solution: we have $T = 2\pi, \omega_0 = \frac{2\pi}{T} = 1$.

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x(t) dt = \frac{1}{2\pi} \left(\int_{-\pi}^{0} (-t) dt + \int_{0}^{\pi} \pi dt \right) = \frac{1}{2\pi} \left(\left[-\frac{t^2}{2} \right]_{-\pi}^{0} + \pi^2 \right) = \frac{1}{2\pi} \left(\frac{\pi^2}{2} + \pi^2 \right) = \frac{3\pi}{4}$$

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \cos(kt) dt = \frac{1}{\pi} \left(-\int_{-\pi}^{0} t \cos(kt) dt + \pi \int_{0}^{\pi} \cos(kt) dt \right)$$
$$= \frac{1}{\pi} \left(-\left[\frac{1}{k} t \sin(kt) \right]_{-\pi}^{0} + \frac{1}{k} \int_{-\pi}^{0} \sin(kt) dt + \pi \left[\frac{1}{k} \sin(kt) \right]_{0}^{\pi} \right)$$
$$= \frac{1}{\pi} \left(0 - \frac{1}{k} \left[\frac{1}{k} \cos(kt) \right]_{-\pi}^{0} + 0 \right) = \frac{\cos(\pi k) - 1}{\pi k^{2}}$$
$$= \begin{cases} 0, \text{ if } k \text{ is even} \\ -\frac{2}{\pi k^{2}}, \text{ if } k \text{ is odd} \end{cases}$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) \sin(kt) dt = \frac{1}{\pi} \left(-\int_{-\pi}^{0} t \sin(kt) dt + \pi \int_{0}^{\pi} \sin(kt) dt \right)$$

$$= \frac{1}{\pi} \left(\left[\frac{1}{k} t \cos(kt) \right]_{-\pi}^{0} - \frac{1}{k} \int_{-\pi}^{0} \cos(kt) dt - \pi \left[\frac{1}{k} \cos(kt) \right]_{0}^{\pi} \right)$$

$$= \frac{1}{\pi} \left(\frac{1}{k} \pi \cos(\pi k) + 0 - \pi \left(\frac{1}{k} \cos(k\pi) - \frac{1}{k} \right) \right)$$

$$= \frac{1}{k}$$

Thus,

$$x(t) = \frac{3\pi}{4} - \sum_{\substack{k=0\\k \text{ odd}}}^{\infty} \frac{2}{\pi k^2} \cos(kt) + \sum_{k=1}^{\infty} \frac{1}{k} \sin(kt)$$

3. (20 pts.) An LTI system generates the output

$$y(t) = (e^{-2t} - e^{-3t})u(t)$$

in response to the input $x(t) = e^{-2t}u(t)$.

(a) Determine the unit impulse response h(t) of the system.

Solution: since the system is LTI, $y(t) = x(t) \star h(t)$. In the frequency domain,

$$Y(\omega) = X(\omega)H(\omega);$$

$$X(\omega) = \frac{1}{j\omega+2}$$

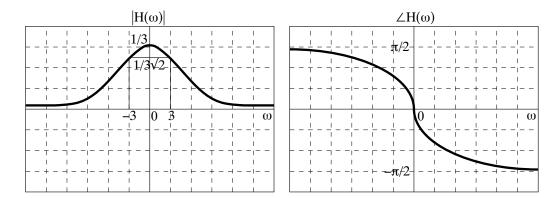
$$Y(\omega) = \frac{1}{j\omega+2} - \frac{1}{j\omega+3} = \frac{1}{(j\omega+2)(j\omega+3)}$$

$$H(\omega) = \frac{Y(\omega)}{X(\omega)} = \frac{j\omega+2}{(j\omega+2)(j\omega+3)} = \frac{1}{j\omega+3}.$$

Therefore,

$$h(t) = e^{-3t}u(t).$$

(b) Sketch the amplitude $|H(\omega)|$ and the phase $\angle H(\omega)$ in the sets of axes provided. Be sure to mark the axes properly.



$$H(\omega) = \frac{1}{j\omega + 3}$$
$$= \frac{3}{j\omega + 3} - j\frac{\omega}{\omega + 3};$$
$$|H(\omega)| = \frac{1}{\sqrt{\omega^2 + 9}}$$
$$\angle H(\omega) = \tan^{-1}\left(-\frac{\omega}{3}\right)$$
$$|H(0)| = \frac{1}{3};$$
$$|H(\pm 3)| = \frac{1}{\sqrt{2}}|H(0)| = \frac{1}{3\sqrt{2}}$$

Exam II: Solutions

4. (20 pts.) Consider the discrete-time signal

$$x[n] = \cos(3n)p[n],$$

where p[n] is the rectangular pulse

$$p[n] = \begin{cases} 1, & n = 0, 1, \dots, 6\\ 0, & \text{otherwise} \end{cases}$$

(a) Compute its discrete-time Fourier transform (DTFT) $X(\Omega)$. Solution:

$$P(\Omega) = \frac{\sin(7\Omega/2)}{\sin(\Omega/2)} e^{-j3\Omega}$$

$$X(\Omega) = \frac{1}{2} \left[P(\Omega+3) + P(\Omega-3) \right]$$

$$= \frac{1}{2} \left[\frac{\sin(7(\Omega+3)/2)}{\sin((\Omega+3)/2)} e^{-j3(\Omega+3)} + \frac{\sin(7(\Omega-3)/2)}{\sin((\Omega-3)/2)} e^{-j3(\Omega-3)} \right]$$

(b) Express the 7-point discrete Fourier transform (DFT) of x[n] in terms of the DTFT $X(\Omega)$. Solution: for k = 0, 1, ..., 6,

$$X_{k} = X(2\pi k/7)$$

= $\frac{1}{2} \left[\frac{\sin(7(2\pi k/7 + 3)/2)}{\sin((2\pi k/7 + 3)/2)} e^{-j3(2\pi k/7 + 3)} + \frac{\sin(7(2\pi k/7 - 3)/2)}{\sin((2\pi k/7 - 3)/2)} e^{-j3(2\pi k/7 - 3)} \right]$

5. (10 pts.) You have two discrete-time signals, x[n] and $\nu[n]$, where x[n] = 0 for n < 0 and $n \ge 1000$ and $\nu[n] = 0$ for n < 0 and $n \ge 1040$. Explain how you would use the FFT algorithm in order to efficiently compute the convolution $x[n] \star \nu[n]$ and estimate the number of (complex) multiplications you would need.

Solution: in general, the convolution of x[n] and $\nu[n]$ will have 1000 + 1040 = 2040 nonzero components. The smallest power of 2 that is larger than 2040 is $L = 2048 = 2^{11}$. Let us pad x[n] and $\nu[n]$ with zeros so that

x[n] = 0,	$n = 1000, 1001, \dots, 2048$
$\nu[n] = 0,$	$n = 1040, 1041, \dots, 2048$

Then to compute $x[n] \star \nu[n]$, we would first use the FFT algorithm to compute the *L*-point DFT's X_k and V_k of x[n] and $\nu[n]$, and then use the FFT algorithm to compute the inverse *L*-point DFT of the product of X_k and V_k .

We will need:

- On the order of $(1/2)L \log_2 L = (1/2) \cdot 2048 \cdot 11 = 11264$ multiplications to compute the *L*-point DFT of x[n].
- On the order of $(1/2)L \log_2 L = (1/2) \cdot 2048 \cdot 11 = 11264$ multiplications to compute the *L*-point DFT of $\nu[n]$.
- L = 2048 multiplications to compute the product of X_k and V_k .
- On the order of $(1/2)L \log_2 L = (1/2) \cdot 2048 \cdot 11 = 11264$ multiplications to compute the *L*-point inverse DFT of the product of X_k and V_k .

Thus, the total number of multiplications is on the order of

11264 + 11264 + 2048 + 11264 = 35840.